If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x=1
We move all terms to the left:
10x^2+8x-(1)=0
a = 10; b = 8; c = -1;
Δ = b2-4ac
Δ = 82-4·10·(-1)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{26}}{2*10}=\frac{-8-2\sqrt{26}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{26}}{2*10}=\frac{-8+2\sqrt{26}}{20} $
| -5-x=-2(x+8) | | -105=-5(5x-4) | | |7x+9|-12=3x-23 | | 6(2-c)=54 | | a^2+4a+0=0 | | 90+k/3=120 | | 7x+9|-12=3x-23 | | 6(2c)=54 | | 23x-42x-80-9=63 | | -16-6n=-3(4n-2) | | -3+r=7 | | (x+3)+(9x-43)=180 | | 3x-18+6x=27 | | 9(y-2)+4=21 | | -6b+7(b-8)=-35+86 | | 6r-8=4r+5 | | -16-6n=-3 | | 4x+1÷=11 | | (x+3)(9x-43)=180 | | 2x+2+90=180 | | x/9-40=-30 | | 5(p-3)=-2(7-2p)-5 | | 5=4g-19 | | (-8/9)y=-16/7 | | -8y+4(y+2)=18 | | 4(u+8)-8u=-8 | | 3p2−10p=14 | | V2-v=72 | | -8/9y=-16/7 | | 2w-3=+5 | | 3x−4=113x−4=11 | | -2n+6(-2n+8)=132 |